

MAHATMA GANDHI COLLEGE, IRITTY

(Re accredited by NAAC with A Grade) Keezhurkunnu, Keezhur PO, Kannur Dt., Kerala – 670 703

LaTeX and GeoGebra

The Department of Mathematics, Mahatma Gandhi College, Iritty started a **Certificate Course** in 'Latex and GeoGebra' There will be 30 hours of contact classes (including practical). A maximum of 25 students will be admitted to the course. There will be a practical exam (for 20 marks). Grade certificates will be issued to students who submit assignments in both LaTeX and GeoGebra and get more than 40% marks in the practical exam. Course will start from January 2023 and come to an end by May 2023.

COURSE OUTCOMES

CO1	Learn installation of the software		
CO2	Understand the use of LateX in typesetting		
CO3	Learn basic structure of a LateX document		
CO4	Understand the preamble of a document		
CO5	Learn to include Title, Author, Date and Comments		
CO6	Learn to bold, italics and underlining a content		
CO7	Learn to add images, captions, creating list and tables		
CO8	Understand different Mathematics environment and Learn to write mathematical		
	expressions using different command	ds	
CO9	Understand different types of package	ges	
CO10	Learn to create a simple letter, resear	rch article or question pap	per using LaTex
CO11	Familiarizing GeoGebra		
Link	for	joining	classroom

https://classroom.google.com/c/NTEzNDM5MTA1MDU2?cjc=4hj7npz

We expect sincere cooperation and whole hearted support from the faculty and students in Mathematics fraternity.

Thanking you,					
With regards,					
Jimly Manuel	Dr Bijumon R				
Conveners	Head, PG Dept of Mathematics				
Faculty Members:					
Haseena C, Priyanka P, Vidya T.M., Maya P V,					
Aneesh Kumar K	Dr Swarupa R				
Convener, IQAC	Principal				
Email: maths.mgc1@gmail.com					

PG DEPARTMENT OF MATHEMATICS MAHATMA GANDHI COLLEGE, IRITTY

Re-Accredited by NAAC with A Grade (Aided and Affiliated to Kannur University) email: maths.mgc1@gmail.com

CERTIFICATE COURSE IN

"LaTeX and GeoGebra" (CCMATLG)

SYLLABUS w.e.f. 2021

Course Code	Theory	Practical	Marks		
			External	Internal	Total
CCMATLG	12Hrs	18 Hrs	40	10	50

COURSE OUTCOMES

CO1	Learn installation of the software
CO2	Understand the use of LateX in typesetting
CO3	Learn basic structure of a LateX document
CO4	Understand the preamble of a document
CO5	Learn to include Title, Author, Date and Comments
CO6	Learn to bold, italics and underlining a content
CO7	Learn to add images, captions, creating list and tables
CO8	Understand different Mathematics environment and Learn to write mathematical
	expressions using different commands
CO9	Understand different types of packages
CO10	Learn to create a simple letter, research article or question paper using LaTex
CO11	Familiarizing GeoGebra

Module 1 - What is LaTex?, Why learn LaTex?. Writing your first piece of LateX. The preamble of a document. Including title, author and date information. Adding comments.

Bold, Italics and underlining. Adding Images. Captions, Labels and references. Creating list in LateX. Adding math to LateX. Different packages.

Hours)

Module 2 –. Basic document structure. Abstract. Paragraphs and new lines. Chapters and sections. Creating tables. Adding boarders. Adding table of contents.

Hours)

Module 3 - Familiarizing with GeoGebra tools, Relation with Algebra and Geometry (Giving algebraic input and getting geometric output),Creation of three dimensional geometrical objects ,Matrix Theory with the help of GeoGebra.

Hours)

Practical Work:

- 1. Prepare an article on some MSc topic(Not more than 5 pages)
- 2. Construction of an equilateral triangle with given sides Fifis
- 3. Construction of cylinders, spheres of given measurements.
- 4. Finding eigen values and eigen vectors of given matrix.
- 5. Locating points and finding position vectors.

References:

- 1. 'LaTex beginners Guide', 2nd Edition, Steffan Kotwitz, 2021.
- 2. 'More Math into LaTex', George Gratzer, 2007.
- 3. "An Introduction to GeoGebra", Steve Phelps
- 4. e-resources

(10

(10

(10

MAHATMA GANDHI COLLEGE, IRITTY

CERTIFICATE COURSE in

LaTeX and GeoGebra

2023-2024

SI. No	Reg. No	Name	Class
1			I MSc Mathematics
	CSPSMM1002	Abhina P	
2	CSPSMM1003	Achu C	I MSc Mathematics
3	CSPSMM1004	Aiswarya K	I MSc Mathematics
4	CSPSMM1005	Alka Rajeev P. M.	I MSc Mathematics
5	CSPSMM1006	Anusree T. V	I MSc Mathematics
6	CSPSMM1007	Devananda K	I MSc Mathematics
7	CSPSMM1008	Devika M	I MSc Mathematics
8	CSPSMM1009	Fathimathul Fidha S	I MSc Mathematics
9	CSPSMM1010	Hashana Hashim	I MSc Mathematics
10	CSPSMM1011	Jumana Hasin K	I MSc Mathematics
11	CSPSMM1012	Jwala M Jose	I MSc Mathematics
12	CSPSMM1013	Keerthana P K	I MSc Mathematics
13	CSPSMM1014	Lavanya U. K	I MSc Mathematics
14	CSPSMM1015	Steffy Joseph	I MSc Mathematics
15	CSPSMM1016	Vaishnavi K	I MSc Mathematics
16	CSPSMM1017	Varsha K	I MSc Mathematics
17	CSPSMM1018	Varsha P	I MSc Mathematics

MAHATMA GANDHI COLLEGE, IRITTY

Affiliated to Kannur University, Re-Accredited with A Grade by NAAC with CGPA 3.22 Kannur Dist-Kerala 670703

Certificate of Completion

This is to certified that ...Abhina.P......student of first year M.Sc. Mathematics successfully completed the certificate course in *'LaTeX and GeoGebra'* offered by P.G. Department of Mathematics in association with IQAC, Mahatma Gandhi College, Iritty in the academic year 2023-2024.

Jimly Manuel Coordinator

Dr. Bijumon R HOD

Dr. Aneesh Kumar K IQAC Coordinator

Dr. Swarupa R Principal

2 Linear spaces and Linear maps

We introduce an algebraic structure on a set X and study functions on X which are well behaved with respect to this structure.

from now onwards **K** will denote either \mathbb{R} , set of all real numbers or \mathbb{C} , set of all complex numbers. For $k \in C$ Re k and Im k will denote the real and imaginary part of k.

A linear space(or a Vector space) over K is a non empty set X along with a function $+ : X \times X \to X$, called **addition** and a function $. : \mathbf{K} \times X \to X$ is called **scalar multiplication** such that for all $x, y, z \in X$ and $k, l \in \mathbf{K}$ we have

 $\begin{aligned} x+y &= y+z\\ x+(y+z) &= (x+y)+z\\ \text{there exists } 0 \in x \text{ such that } x+0 &= x\\ \text{there exists } \in x \text{ such that } x+(-x) &= 0 \end{aligned}$

1 Linear Space and Linear Maps

We introduce an algebraic structure on a set X and study functions on X which are well-behaved with respect to this structure.

From now onwards, \mathbf{k} will denote either \mathbf{R} , the set of all complex numbers. For $k \in \mathbf{C}$, Re K and Im K will denote the real part and the imaginary part of K.

A linear space (or a **vector space**) over **K** is a non empty set X along with a function $+ : X \times X \to X$, called **K**,we have

 $\begin{aligned} x+y &= y+x, \\ x+(y+z) &= (x+y)+z \\ \text{there exist } 0 \in X \text{ such that } x+0 =, \\ \text{there exist } -x \in X \text{ such that } x+(-x) = 0, \end{aligned}$

03-ABHINA P

$\mathbf{A} \; \mathbf{P}$

today

2 Linear spaces and Linear maps

We introduce an algebraic structure on a set X and study functions on X which are well behaved with respect to this structure .

from now onwards **K** will denote either \mathbb{R} , set of all real numbers or \mathbb{C} , set of all complex numbers. For $k \in C$ Re k and Im k will denote the real and imaginary part of k.

A linear space(or a Vector space) over K is a non empty set X along with a function $+ : X \times X \to X$, called **addition** and a function $. : \mathbf{K} \times X \to X$ is called **scalar multiplication** such that for all $x, y, z \in X$ and $k, l \in \mathbf{K}$ we have

 $\begin{aligned} x+y &= y+z\\ x+(y+z) &= (x+y)+z\\ \text{there exists } 0 \in x \text{ such that } x+0 &= x\\ \text{there exists } \in x \text{ such that } x+(-x) &= 0 \end{aligned}$

1 Linear Spaces and Linear Maps

We introduce an algebraic structure on a set X and study functions on X which are well-behaved with respect to this structure.

From now onwards, **K** will denote either **R**, the set of all real numbers or **C**, the set of all complex numbers.For $k \in \mathbf{C}$, Re k and Im k will denote the real part and the imaginary part of k.

A linear space (or a vector space) over **K** is a non empty set X along with a function $+ : X \times X \to X$, called **addition**, and a function $. : \mathbf{K} \times X \to X$, called scalar multiplication, such that for all $x, y, z \in \mathbf{K}$, we have

 $\begin{aligned} x+y &= y+x, \\ x+(y+z) &= (x+y)+z, \\ \text{there exist } 0 \in X \text{ such that } x+0 &= x, \\ \text{there exist } -x \in X \text{ such that } x+(-x) &= 0, \end{aligned}$

1 Linear Spaces and Linear Maps

We introduce an algebraic structure on a set X and study functions on X which are well-behaved with respect to this structure.

From now onwards, **K** will denote either **R**, the set of all real numbers or **C**, the set of all complex numbers.For $k \in \mathbf{C}$, Re k and Im k will denote the real part and the imaginary part of k.

A linear space (or a vector space) over **K** is a non empty set X along with a function $+ : X \times X \to X$, called **addition**, and a function $. : \mathbf{K} \times X \to X$, called scalar multiplication, such that for all $x, y, z \in \mathbf{K}$, we have

 $\begin{aligned} x+y &= y+x, \\ x+(y+z) &= (x+y)+z, \\ \text{there exist } 0 \in X \text{ such that } x+0 &= x, \\ \text{there exist } -x \in X \text{ such that } x+(-x) &= 0, \end{aligned}$

